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1 Associating symplectic objects to smooth ones

1.1 Introduction

Let M be a smooth closed manifold of dimension m. Then its cotangent bundle T ∗M has
a natural exact symplectic structure ω = dλ coming from the Liouville 1-form λ on T ∗M .
Recall that λ is de�ned by the requirement that, for any 1-form α on M (considered as a map
M → T ∗M) the pullback of λ by α is equal to α :

α∗λ = α.

Explicitly, for υ ∈ T ∗M , w ∈ Tu(T ∗M), writing π : T ∗M →M for the base projection,

λu(w) = u(π∗(w)).

If we are given local coordinates q1, . . . , qm on an open set U inM , then q1, . . . , qm, p1, . . . , pm

are coordinates on T ∗U ⊂ T ∗M (where α ∈ T ∗qM writes α =
m∑
i=1

pidqi). The expression for λ

becomes (where by the usual abuse of notation dqi really means π∗dqi, noting that λ is a map
T ∗M → T ∗(T ∗M)):

λ =

m∑

i=1

pidqi.

And we get the standard expression for the symplectic form :

ω =

m∑

i=1

dpi ∧ dqi.

Fact 1. If M is di�eomorphic to M ′, then T ∗M is symplectomorphic to T ∗M ′.

Proof. Let φ : M ' M ′. Then φ∗ : T ∗M → T ∗M ′ is a di�eomorphism. Now by naturality of
the Liouville 1-form (i.e. the assignment M 7→ λM is functorial), the pullback of λM ′ by φ∗
has to be λM . As a consequence (φ∗)

∗(dλM ′) = dλM .

*Everything here (content and �gures) was stolen from [EE04], [Ng05], [Ng12] and [EENS11].
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We conclude that the symplectomorphism class of T ∗M is an invariant of the

di�eomorphism class of M . Is this invariant e�cient ?
It turns out the symplectic manifold T ∗M recovers homotopical data about M :

Theorem 1.1. (Viterbo, Salamon-Weber, Abbondandolo-Schwarz). The Hamiltonian Floer

homology of T ∗M is isomorphic to the singular homology of the free loop space of M .

It also seems the symplectic structure can distinguish di�erent smooth structures :

Theorem 1.2. (Abouzaid). If Σ is an exotic (4k+1)-sphere that does not bound a parallelizable

manifold, then T ∗Σ is not symplectomorphic to T ∗S4k+1 (for the standard sphere).

Therefore we can wonder : Is the smooth type (i.e. up to di�eomorphism) ofM determined
by the symplectic type of T ∗M (i.e. up to symplectomorphism) ?
This question is still open (at least for closed manifolds : by the work of Knapp di�erent 4-
dimensional homeomorphic open manifolds have symplectomorphic cotangent bundles [Kna12]
- thus any exotic R4 together with standard R4 are a counterexample).

In this talk, we will present the relative version of this symplectic approach : its appli-
cation to the classi�cation of types (i.e. up to isotopy or regular homotopy) of (immersed)
submanifolds.

1.2 The conormal construction

1.2.1 Lagrangian version

Let N ⊂ M be a n-dimensional (potentially immersed) closed submanifold of M . To it, we
can associate a subspace of T ∗M : the conormal bundle of N denoted by LN .

LN = {u ∈ T ∗M |N , u(v) = 0 ∀v ∈ TN} ⊂ T ∗M

LN is the set of covectors based at points of N whose kernel contains the tangent space
to N . If N is embedded, LN is a vector subbundle of rank m − n of T ∗M |N and as such
is an embedded m-submanifold of T ∗M . In fact it is exact Lagrangian. Indeed let u ∈ LN
and w ∈ TuLN ⊂ Tu(T ∗M |N ). Note that the base projection π sends T ∗M |N to N , so that
π∗(w) ∈ Tπ(u)N is a tangent vector to N and

λu(w) = u(π∗(w)) = 0

by de�nition of LN . We get ω|LN = dλ|LN = 0 and λ|LN = 0 thus exact.
Now via this construction, if we isotope N through smooth embeddings in M , LN will be
isotoped through exact Lagrangians. So the hamiltonian isotopy class of LN ⊂ T ∗M is

an invariant of the smooth isotopy class of N ⊂M .

1.2.2 Legendrian version

If we are given a Riemannian metric g on M , we can simplify LN a little and make contact
geometry enter the game by losing one dimension and getting rid of noncompactness. Let
ST ∗M be the spherization of the cotangent bundle of M , i.e. tangent covectors of norm 1,
also called the cosphere bundle. It is a contact manifold which is the convex boundary of
the Liouville domain DT ∗M (the disc cotangent bundle i.e. covectors of norm ≤ 1). Indeed
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λ|ST ∗M is a contact form 1. Now, intersect LN with the unit cotangent bundle ST ∗M of M
and you get the unit conormal bundle of N ⊂M :

LN = LN ∩ ST ∗M = {u ∈ T ∗M |N , ||u||g = 1, u(v) = 0 ∀v ∈ TN}.

With the isomorphism T ∗M
g→ TM , we can furthermore identify LN with the unit normal

bundle of N and so with the boundary of a tubular neighborhood of N in M .
The previous discussion shows that LN is a (m − n − 1)-sphere bundle over N , and in fact
a closed Legendrian submanifold of ST ∗M . We conclude as before that the Legendrian

isotopy class of LN ⊂ ST ∗M is an invariant of the smooth isotopy class of N ⊂M .

Figure 1: Representation of N ⊂M , LN ⊂ T ∗M and LN ⊂ ST ∗M in the simplest case M = S1 and
N is a pair of points - this can also be considered as schematic of the general case.

Remark 1.3. One could be unconvinced by the last statement because of the necessity of
choosing a metric. In fact we can bypass this choice by considering, in place of ST ∗M , the
Grassmanian bundle of oriented hyperplanes tangent to M . Any tangent hyperplane is deter-
mined by a half-line of cotangent vectors of M , so that this bundle is canonically isomorphic
to the oriented projectivized cotangent bundle P+T

∗M of M . As a quotient of T ∗M , P+T
∗M

inherits the hyperplane �eld ker λ (because λ commutes with R>0 multiplication in cotangent
�bers) and is the natural contact manifold associated to M . Finally in the hyperplane Grass-
manian picture, LN is the set of hyperplanes over points of N which contains the tangent

1Let X be the radial vector �eld in cotangent directions (in local coordinates X =
m∑
i=1

pi
∂

∂pi
). It is transverse

to ST ∗M , and λ = Xyω. The claim follows.
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spaces to N . For any choice of metric, P+T
∗M can be identi�ed with the unit cotangent

bundle ST ∗M by a canonical contactomorphism (sending a half-line to its intersection with
the unit cosphere). The use of a metric simply allows us to geometrically visualize LN as the
boundary of a tubular neighborhood of N (and clearly see its sphere bundle structure).

Note 1.4. If N is only immersed in M , then LN could a priori have double points. A simple
condition to avoid these is to ask N to be a self-transverse immersion (which is a generic
property as n < m). In this case, over a double point q of N there is two transverse tangent
planes TqN

1 and TqN
2, so that there is two corresponding sets of points of LN over q:

� the oriented tangent hyperplanes of M containing TqN
1

� the ones containing TqN
2.

These sets are disjoint because there cannot be a point in both i.e. a hyperplane contain-
ing TqN

1 and TqN
2. Such an hyperplane would contain TqN

1 ⊕ TqN
2, which is TqM by

the transversality assumption, so don't exist. Moreover, if we move N by regular homo-
topy without self-tangency at double points, LN remains embedded so that the Legendrian

isotopy class of LN ⊂ ST ∗M is an invariant of the "regular homotopy without

self-tangency" class of the self transverse immersion N in M .

2 The case of submanifolds of euclidian space

2.1 Generalities

Locally, contact geometry sums up to the study of 1-jet spaces. Recall that ifW is a manifold,
J1W = T ∗W×R is canonically a contact manifold with contact form α = dz−λW where λW is
the Liouville 1-form on T ∗W lifted trivially in the additional R factor, and z is this additional
coordinate2. Let's come back to the setup of the previous section, in the case M = Rm. Then
the unit cotangent bundle is trivial :

ST ∗Rm = Rm × Sm−1,

so that we can see it as Sm−1-bundle over Rm, or a Rm-bundle over Sm−1. In fact we have
better :

Proposition 1. (ST ∗Rm, λRm |ST ∗Rm) is contactomorphic to (J1Sm−1, dz−λSm−1) via the map

Rm × Sm−1 → J1(Sm−1)

(q, p) 7→ Ψ(q, p) = (p, q − 〈q, p〉p, 〈q, p〉)

where (q, p) are global coordinates on Rm × Sm−1 (with p of unit norm), and 〈·, ·〉 is the
canonical scalar product on Rm, so that 〈q, p〉 is the part of the vector q orthogonal to the
sphere Sm−1 at p, and q − 〈q, p〉p is the part of q tangent to the sphere at p 3.

2J1W is the contactization of the exact symplectic manifold T ∗W .
3This seems to implicitly assumes a choice of linear isomorphisms between TpS

m−1 and Rm−1 for each p.
This is impossible, except for m = 2, 4, 8, because spheres are generally not parallelizable. However the global
map is well de�ned : if we write ν(Sm−1) for the normal bundle of the standard sphere in Rm which is a trivial
line bundle, then TSm−1 ⊕ ν(Sm−1) is trivialisable as it is the restriction of the (trivial) tangent bundle of
Rm restricted to Sm−1 (spheres are stably parallelizable). Identifying cotangent and tangent bundles via the
canonical metric on Rm, this is exactly what the map Ψ is about (seeing Rm × Sm−1 as TRm|Sm−1 .
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Proof. Ψ is a bundle map covering the identity of Sm−1 and is clearly a linear isomorphism
on each �ber p = constant. So Ψ it a di�eomorphism. Let's show it is a contactomorphism
for the respective canonical contact structures : in coordinates (x, y, z) on J1Sm−1 where
x ∈ Rm unit (assuming the standard embedding of the sphere in euclidian space 4) and

y ∈ TxSm−1 ⊂ Rm so that y+ zx is a vector in Rm, we have α = dz−λSm−1 = dz−
m∑
i=1

yidxi.

So that Ψ∗α = d(〈q, p〉)−
m∑
i=1

(qi−〈q, p〉pi)dpi = d(
m∑
i=1

piqi)−
m∑
i=1

qidpi (because p is on the unit

sphere
m∑
i=1

p2i = 1 so that
m∑
i=1

pidpi = 0) and �nally Ψ∗α =
m∑
i=1

pidqi = λRm |ST ∗Rm .

The advantage of this point of view are double. In 1-jet spaces there are two special
projections : the Lagrangian projection πC : J1W → T ∗W which forgets the z coordinate
and the front projection πF : J1W → W × R which deletes cotangent directions. We can
recover a Legendrian L ⊂ J1W from either projection (completely from πF (L) and only up to
z-translation from πC(L)), and so can diminish greatly the dimension of our drawings (from
2 dimW+1 to dimW+1). Besides, Legendrian contact homology in 1-jet spaces is perfectly
well-de�ned - we will apply it in section 3.

2.2 Plane curves

The simplest non-trivial examples are (connected) plane curves i.e. (self-transverse) immer-
sions of N = Σ1 in R2. In this case the unit conormal bundle LN has two connected compo-
nents.
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planes must be opposite. Self tangencies where the orientations on the tangent
planes agree are called dangerous self-tangencies.

2. Examples

In this section we consider important examples of the construction outlined in
the previous section.

2.1. Plane Curves. The simplest example to consider is immersion of (oriented)
S1 into R2. The unit cotangent bundle is W = R2 × S1 and the contact structure
is α = (p1 dq1 + p2 dq2)|WM . Using coordinates (x1, x2, θ) on W, where xi = qi and
tan θ = p1

p2
, we can rewrite

α = p1 dq1 + p2 dq2 = p2(
p1
p2

dq1 + dq2)

= p2(tan θ dx1 + dx2) =
p2

cos θ
(sin θ dx1 + cos θ dx2)

= sin θ dx1 + cos θ dx2.

The last inequality follows from p2

cos θ = p2
p2

p2
1
+p2

2

= p21 + p22 = 1. Thus the contact

structure on W is

ξ = ker(sin θ dx1 + cos θ dx2).

This is easy to picture. See Figure 1. All of the contact planes contain ∂
∂θ , so they

Figure 1. The unit cotangent bundle of R2. The thicker circle in
the middle is the unit circle above the origin. A few contact planes
along this circle are indicated. They make a complete turn as the
circle is traversed.

are spanned by this vector and a vector in the x1x2-plane. For a fixed value of θ
this vector in the x1x2-plane is fixed. As θ goes around the circle this vector rotates
around once.

Now given an oriented immersed curve N = γ in R2 the Legendrian LN is
simply the graph of the “twisted” Gauss map. That is, if we let R(θ) = θ + π

2 and

g : N → S1 be the Gauss map, then the twisted Gauss map is R ◦ g. (Note we
are identifying TR2 and T ∗R2 using the flat metric on R2.) See Figure 2 for some
examples.

Figure 2: The cosphere bundle of R2 (ST ∗R2) represented as the �lled torus R2×S1, with some of its
contact planes around the {0} × S1 �ber.

In fact this is the general case of codimension one immersions. Indeed as explained earlier
we can identify LN on embedded charts of N with the boundary of a tubular neighborhood of
N . As N is a codimension one hypersurface, it cuts the ambiant space in two, so that LN has
(locally) two connected components. What happen when we glue together all of these parts ?

4Recall the Liouville form of Sm−1 is induced by the Liouville form of Rm : λRm =
m∑
i=1

yidxi.
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Proposition 2.1. If n = m− 1, LN is a two-fold cover of N which happens to be exactly the

orientation cover of N .

Proof. In the hyperplane Grassmannian picture, remember that LN is the set of oriented
tangent hyperplanes containing TN . But N is an hypersurface so that, if q ∈ N , TqN is an
hyperplane, and so there are only two oriented hyperplanes containing it : +TqN and −TqN .
Each point can be seen as a choice of orientation on TqN .

Assuming N is connected, two things can happen :

� either N is not orientable and the orientation cover LN is connected.

� or N is orientable and LN has two connected components L+
N and L−N di�eomorphic

to N corresponding to the two possible orientations of N . Each component can be
recovered from the other by the antipodal map on Sm−1 followed by changes of sign on
both Rm−1 and R factors (in the J1(Sm−1) picture).

Note that in the second case, if we are given an orientation on N , this distinguishes one of
the components (denoted L+

N above). Moreover, L+
N is oriented by this choice. Dropping one

component has one more advantage : N can now have inverse self-tangencies. Indeed if at a
double point q of N , the tangent planes coïncide but their coorientation (coming from N 's
orientation together with Rm's) are opposite (what we mean by an inverse self-tangency), each
will correspond to only one point. Both form a pair of antipods in Sm−1, so that L+

N has no
double point (whereas LN = L+

N∪L−N has a double point over q). However direct self-tangency
(i.e. when coorientations agree) still creates double points of L+

N
5. Calling immersions and

regular homotopy safe if they don't have direct self-tangency, we conclude : the Legendrian
isotopy class of L+

N is a safe homotopy class invariant of the safely immersed

(oriented) hypersurface N of M .

Remark 2.2. In higher codimension n < m − 1, N connected implies LN connected. This is
clear when investigating the tubular neighborhood of codim > 1 embedding.

Coming back to plane curves, as S1 is orientable, this explains our �rst claim. Recall
ST ∗R2 is a contact manifold identi�ed with the �lled torus (see �gure 2), and LN (and thus
L+
N ) is a Legendrian submanifold of this cosphere bundle. That is to a plane curve, we have

associated a Legendrian knot in R2 × S1 (called the conormal knot, see �gure 3).
So any isotopy invariant of L+

N is a safe homotopy invariant of N . For instance we have
the classical invariants of L+

N :

� its smooth knot type K(L+
N ) (which contains its homology class in H1(R2 × S1) ' Z

also called its winding number n(L+
N ) around {0} × S1)

� its rotation number r(L+
N )

� its Thurston-Bennequin number tb(L+
N ).

As explained in the preceding subsection, we can see L+
N as a Legendrian in J1(S1). Then

with (q1, q2) coordinates on R2, parametrizing J1(S1) by (θ, y, z) ∈ R/2πZ × R × R, we can
5That's why they were called dangerous by Arnold.
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Figure 2. On the left hand side are two plane curves. On the
right hand side is their corresponding Legendrian circles.

Note that if γ0 and γ1 are two regular homotopic curves in R2 then any regular
homotopy γt between γ1 and γ2 gives a map Cγt : S

1 × [0, 1] → W × [0, 1] such
that C(•, j) parameterizes Lγj , j = 0, 1. It is straightforward to check that the self
intersection number of this cylinder is independent of the particular regular homo-
topy chosen and that any dangerous self-tangency moment of a regular homotopy
contributes ±1 to the self intersection number. Thus if the algebraic self inter-
section number of Cγt is non-zero for some particular choice of regular homotopy
then the same holds true for all regular homotpies and we may conclude the ne-
cessity of self-tangencies. Twice the self intersection number of Cγt computes (one
more than) the difference between a “relative” Thurston-Benniquin type invariant
of L(γ0) and L(γ1). The Thurston-Bennequin invariant of a Legendrian S1 is a
well-known invariant of Legendrian knots in 3-dimensions. Thus we see shadows of
contact geometry giving invariants of plane curves.

2.2. General Co-dimension One immersions. In [11], Goryunov studied im-

mersions of surfaces in R3 (and more general codimension one immersions) from a
perspective similar to that described above. His methods allows to conclude that
there must be self tangencies in certain regular homotopies. One may also use con-
tact homology (defined below) in a similar way as we illustrate with the following
example. Consider the two immersions in Figure 3. Let L1 and L2 be the lifts
of the fronts the left and right ones respectively. While no “classical invariants”
in contact geometry distinguish these two Legendrian S2’s contact homology will
distinguish them. See Section 4.3 below for this computation.

2.3. Knots in R3. A knot K is an embedded S1 in R3, so our ambient manifold
is M = R3. Thus the contact manifold of interest is the unit cotangent bundle

Figure 3: Two oriented planes curves and their Legendrian conormal knots L+
N in the �lled torus

R2 × S1. To get L−N , just apply the antipodal map of S1 to L+
N .

describe the conormal knot as follows :

L+
N =

{
(φ+

π

2
,−q1 cosφ− q2 sinφ,−q1 sinφ+ q2 cosφ), (q1, q2) ∈ N

with unit tangent vector (cosφ, sinφ)
}
.

or if we prefer normals to tangents :

L+
N =

{
(ψ,−q1 sinψ + q2 cosψ, q1 cosψ + q2 sinψ), (q1, q2) ∈ N

with unit normal vector (cosψ, sinψ)
}
.

The front projection is obtained by dropping the middle coordinate y. It is an usual front
in R/2πZ× R i.e. a singular curve without vertical tangent, and which generically only has
transverse double points and semicubical cusps. Cusps of πF (L+

N ) corresponds to in�ection
points of N .
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(i)

(ii)

(iii)

(iv)

Figure 2. Pairs of plane curves, along with their conormal
knots, that are distinguished by increasingly subtle invari-
ants: (i) Whitney index; (ii) conormal knot type; (iii) framed
conormal knot type (Arnold’s J+ invariant); (iv) Legendrian
conormal knot type.

In the language of Legendrian knot theory, we can rephrase this result: there
are arbitrarily many plane curves whose conormal knots all have the same
classical invariants but are not Legendrian isotopic.

An example of a pair of plane curves satisfying the conditions in The-
orem 1 is given by the bottom line of Figure 2. Note that this “pair” is
actually the same plane curve but with different orientations. Proposition 3
uses contact homology to distinguish between these curves.

We review definitions in Section 2.1, and present an algorithm for drawing
conormal knots in Section 2.2. Section 2.3 gives the proof of our main
result, Theorem 1. In Section 2.4, we show that contact homology gives
new information about loops of plane curves as well.

Acknowledgments. I am grateful to Tobias Ekholm and John Etnyre for
useful discussions, and to Vladimir Chernov for correcting a substantial
error in Section 2.4. I would also like to thank Selman Akbulut and Turgut
Onder for organizing the very productive conference in Gökova. This work
was supported by a Five-Year Fellowship from the American Institute of
Mathematics.

2. Results and Proofs

Figure 4: The same planes curves with their respective Legendrian fronts in R/2πZ×R (coming from
the projection J1S1 → S1×R). The �rst one has index n = +1 (with the canonical orientation of the
plane), rotation number r = 0, and tb = 0, whereas the second has n = 0, r = 0, and tb = −1

Computing the classical invariants is now easy (see the examples on �gure 4) :
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� Round up the cusps and resolve crossings (higher slope behind) to get a smooth knot
type. The winding number (index) is just the degree of the map S1 → S1 obtained by
inclusion of N in J1(S1) followed by the projection to the base.

� r(L+
N ) is half the di�erence between the number of down cusps and the number of up

cusps. It turns out to be always zero : there are as many left cusps as right cusps
(because πF (L+

N ) is a closed curve without vertical tangent). And left cusps are always
down, whereas right cusps are always up (check what happens in a neighborhood of an
in�ection point of N).

� tb(L+
N ) is the di�erence between the number of right handed crossings and the number

of left handed crossings minus half the number of cusps. This is equal to J+(L+
N ) +

n(L+
N )2 + 1 where J+ is Arnold framing invariant of plane curves.

In conclusion classical invariants of L+
N sums up to the framed knot type of LN . But this

is already a strong invariant of plane curves as can be seen on these examples (�gures 4 and
5).

PLANE CURVES AND CONTACT GEOMETRY 3

(i)

(ii)

(iii)

(iv)

Figure 2. Pairs of plane curves, along with their conormal
knots, that are distinguished by increasingly subtle invari-
ants: (i) Whitney index; (ii) conormal knot type; (iii) framed
conormal knot type (Arnold’s J+ invariant); (iv) Legendrian
conormal knot type.

In the language of Legendrian knot theory, we can rephrase this result: there
are arbitrarily many plane curves whose conormal knots all have the same
classical invariants but are not Legendrian isotopic.

An example of a pair of plane curves satisfying the conditions in The-
orem 1 is given by the bottom line of Figure 2. Note that this “pair” is
actually the same plane curve but with different orientations. Proposition 3
uses contact homology to distinguish between these curves.

We review definitions in Section 2.1, and present an algorithm for drawing
conormal knots in Section 2.2. Section 2.3 gives the proof of our main
result, Theorem 1. In Section 2.4, we show that contact homology gives
new information about loops of plane curves as well.

Acknowledgments. I am grateful to Tobias Ekholm and John Etnyre for
useful discussions, and to Vladimir Chernov for correcting a substantial
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2. Results and Proofs

Figure 5: Pairs of plane curves where left and right are distinguished in each line thanks to classical
invariants of the conormal knot. Thus any regular homotopy between left and right has to contain a
dangerous tangency.

2.3 Surfaces

Consider the case n = 2 = m− 1 and more precisely the example of N = S2 safely immersed
and oriented. L+

N is then a Legendrian sphere in J1(S2)
Its classical invariants are :

� The safe regular homotopy class of S2 → J1(S2). As the target is of dimension 2×2+1,
by Whitney theorem(s), the only obstruction for two maps S2 → J1(S2) to be in the
same class is of homotopic nature, i.e. in π2(J

1(S2)) ' π2(S
2) ' Z. This invariant

(which is simply the homology class represented by LK) is determined by the degree of
the map S2 → S2 obtained by inclusion of L+

N followed by projection to the base.

� Its rotation class r(L+
N ) which can be seen as a homotopy class of maps S2 → U(2). As

π2(U(2)) = 0, it it trivial.

� Its Thurston-Bennequin number. It is more or less the linking number of L+
N and L−N .

This gives a �rst-order invariant of immersions of surfaces into R3 (an other one is given
by the number of pairs of triple points, see [Gor97] for full details).
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An well-known example is the standard embedding of the sphere with di�erent coorienta-
tions : a path from one to the other is called a sphere eversion. Their conormal lifts represent
the same homology class but are distinguished by their tb so that any sphere eversion must
contain dangerous self-tangencies. A more sophisticated example is given on �gure 6, we will
distinguish them in the next section.

O x

z

O x

z

Figure 6: Two immersions of the sphere as surfaces of revolution. They are obtained by spinning each
arc (in the plane (xOz)) on the �gure around the vertical axis (Oz) joining their ends.

2.4 Knots

Passing to the codimension two case, the simplest example are links. Consider N = K = S1 an
oriented embedded knot inM = R3 We get a Legendrian surface LK in J1(S2). Remembering
LK identi�es with the boundary of tubular neighborhood of K, it is clear that LK is a torus,
which we will call (by chance) the conormal torus of K. Its classical invariants are :

� The homotopy type of the map T 2 → J1(S2) ∼ S2, i.e. an element of the second
cohomotopy set of the torus. By a theorem of Hopf (as T 2 is a 2-dimensional CW-
complex) this set is isomorphic to H2(T 2). It is determined by the degree of the map
T 2 → S2 obtained by inclusion of LK followed by projection to the base (it corresponds
to the homology class represented by LK). It is equal to the normal degree of the torus
boundary of a small tubular neighborhood of K (by identi�cation of the cotangent and
tangent bundle of R3) which is χ(T 2) = 0 by the Gauss-Bonnet theorem.

� Its rotation class r(LK) seen as an homotopy class of map T 2 → U(2). It can be shown
to be the null map.

� Its Thurston-Bennequin number. For even-dimensional null-homologous Legendrians, it
is always equal to the Euler characteristic, here zero.

In the end, there are no classical invariants for conormal tori. But, we must not lose faith,
and proceed to the next best idea :

3 Applying Legendrian contact homology

3.1 General case

Consider a Legendrian Λ in the contact manifold J1W . As you know, Legendrian contact
homology needs the de�nition of a di�erential graded algebra with some coe�cient (the sim-
plest is Z/2, the reasonably elaborate are Z[H2(J1W,Λ)]) generated by the Reeb chords of
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Λ. To be able to speak of these, we need to �x a contact form α, so that Reeb chords are
portions of integral lines of the Reeb vector �eld Rα which begin and end on Λ. For J1W ,
Rα = ∂

∂z and Reeb chords are vertical segments. Then the di�erential counts holomorphic
curves in the symplectization of J1W which is R × J1W with symplectic form d(etα) where
t is the new coordinate. Note that in the case of this talk W = Sm−1, the symplectization is

symplectomorphic to
·
T ∗Rm i.e. T ∗Rm minus the zero section.

In the front projection Reeb chords correspond to vertical segments joining points with
parallel tangent planes, whereas in the Lagrangian projection they correspond to double points.

Proposition 3.1. For our case of a conormal Legendrian LN associated to a submanifold N
of Rm, the chords correspond to oriented binormals lines of N .

De�nition 3.2. An oriented binormal line6 is a oriented line joining two points q and q′ who
share an oriented normal vector p, such that this line is directed by this p.

Proof. Indeed two such points corresponds to (p, q′− 〈q′, p〉p, 〈q′, p〉) and (p, q− 〈q, p〉p, 〈q, p〉)
for the same p. These are double points of the Lagrangian projection if and only if q′−〈q′, p〉p =
q − 〈q, p〉p ⇐⇒ q′ − q = 〈q′ − q, p〉p i.e. the line joining q and q′ is parallel to the common
normal p.

Note 3.3. We just showed that (oriented) binormals (lines) of N correspond to double points of
the Lagrangian projection of LN . In the same way, oriented bitangent lines, i.e. lines joining
two points who share a oriented tangent vector v (hence sharing a oriented normal vector p),
and are directed by this v, correspond to double points of the front projection of LN (but
these are less important for contact homology). Note also that the length (for the canonical
Riemmanian metric on Rn) of a binormal segment is exactly the length of the corresponding
Reeb chord, namely |〈q′ − q, p〉|.

Moreover, this computation shows that binormals come in pairs : if change p in −p, we get
another oriented binormal line. In terms of chords, this mean that to each Reeb chord over
p in J1(Sm−1) correspond another Reeb chord over −p. Nevertheless, for the codimension
one case, where we only consider L+

N , binormals no longer come by two, because only one of
{p,−p} is a point of L+

N as we �xed an orientation (see �gure 7). However if we keep L−N ,
then two cases can happen :

� an oriented binormal line joins two points with the same normal p (�xed by orientation).
Then this corresponds to a Reeb chord of L+

N over p. But there is also an oriented
binormal joining the same points considered with opposite orientation (with normal
−p). This corresponds to a Reeb chord of L−N over −p.

� an oriented binormal line joins two points with opposite normal p and −p. This is not
a pure Reeb chord of L+

N nor L−N , but this corresponds to two mixed Reeb chords of
LN = L+

N ∪ L−N . One over p and one over −p.

6In standard geometry, a binormal line is simply a unoriented line orthogonal to N in two points. But as
we are working with the spherical normal bundle (and not the projectivized normal bundle), orientation of
lines matter.
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q q'

c

c'

Figure 7: The binormal line (in red dots) on the plane curve N joining q and q′ (left), and the
corresponding Reeb chord (in red dots) on the front joining the images of these points.

3.2 Plane curves

First-order invariants of plane curves are powerful but not complete. The example on �gure
8 of the same plane curve with di�erent orientations cannot be distingued by its framed knot
type of its conormal.

Plane curves and contact geometry

(i)

(ii)

(iii)

(iv)

Figure 2. Pairs of plane curves, along with their conormal knots, that
are distinguished by increasingly subtle invariants: (i) Whitney index;
(ii) conormal knot type; (iii) framed conormal knot type (Arnold’s J+

invariant); (iv) Legendrian conormal knot type.

In the language of Legendrian knot theory, we can rephrase this result: there are arbi-
trarily many plane curves whose conormal knots all have the same classical invariants but
are not Legendrian isotopic.

An example of a pair of plane curves satisfying the conditions in Theorem 1 is given
by the bottom line of Figure 2. Note that this “pair” is actually the same plane curve but
with different orientations. Proposition 3 uses contact homology to distinguish between
these curves.

We review definitions in Section 2.1, and present an algorithm for drawing conormal
knots in Section 2.2. Section 2.3 gives the proof of our main result, Theorem 1. In
Section 2.4, we show that contact homology gives new information about loops of plane
curves as well.
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Figure 8: Two plane curves and the fronts of their conormal knots. These have the same classical
invariants, but are not Legendrian isotopic.

However they are distinguished by their Legendrian contact homology. Indeed taking the
satellite of each LK with the once-positively-stabilized Legendrian unknot, we get the so-called
Eliashberg knots E(2, 3), and E(1, 4) (see �gure 9).Their contact DGA are di�erent as their
Poincaré polynomials sets are respectively {2t+ t−1} and {t3 + t+ t−3}.

Plane curves and contact geometry

Figure 4. Nonhomotopic plane curves, their rectilinear approxima-
tions, conormals, and smoothed conormal fronts.

Figure 5. The Legendrian satellites of the conormal knots from Fig-
ure 4 to the stabilized unknot produce nonisotopic Legendrian knots.

called “Eliashberg knots” in [7] and labeled E(2, 3) and E(1, 4). See Figure 5. The two
knots can be distinguished by their contact homology differential graded algebras [3]; in
particular, E(2, 3) has Poincaré polynomial 2t+ t−1 and E(1, 4) has Poincaré polynomial
t3+t+t−3. It follows that the two conormal knots in J 1(S1) are not Legendrian isotopic,
as desired. �

We can use the plane curves from Proposition 3 to produce an arbitrarily large family
of plane curves whose conormal knots have the same classical invariants but are not
Legendrian isotopic. For r, s ≥ 0, let Cr,s be the plane curve shown in Figure 6, which

171

Figure 9: The satellite construction with the stabilized unknot (on the left) on the fronts of �gure 8.

3.3 Surfaces

Using the identi�cation of Reeb chords with binormals, we see that the conormal Legendrian
associated to the left sphere N1 on �gure 6 has no Reeb chord (for both coorientations). The
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same can be said of the right sphere N2, so that both their DGA are Z/2. Let's prove it by
showing they have no oriented binormals. As these are surfaces of revolution, the problem
reduces to the plane (xOz) (because normal lines to a cross-section stays in the plane of cross-
section). In this plane, shown on �gure 10, it is clear that there is no oriented binormals (but
there are non-oriented binormals corresponding to Reeb chords between L+

N and L−N ).

Figure 10: The cross-sections of the spheres N1 and N2. On the cross-section of N1 each radius is an
unoriented binormal line, but all pairs of points joined have opposite normals. The same can be said
of the 8 unoriented binormal lines we can see on the cross-section of N2. Thus LN1

and LN2
have no

pure Reeb chords, so that L+
N1

and L+
N2

have no Reeb chords.

However, the front of L+
N1

is the zero-section shifted in the vertical (z) direction, so that if

we consider the link of L+
N1

and of another zero-section shifted high up L+
∞ (being the positive

conormal lift of a sphere N∞ of big radius), L+
N1

∐
L+
∞ has a S2 set of Reeb chords (see �gure

11).

Figure 11: The submanifold N1

∐
N∞ ⊂ R3 and some of its oriented binormals. Remember it is the

union of two concentric spheres with the same outer coorientation, so that every radius line is an
oriented binormal, i.e. we have a S2 of these.
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Perturbing L+
∞ by a Morse function f , we get only two Reeb chords a1 and b1 which are the

maximum and minimum of f . By correspondence with the Morse complex of f , ∂a1 = 0 and
∂b1 = 0, so that the Legendrian contact homology of L+

N1

∐
L+
∞ is Z/2〈a1, b1〉 with |a1| = 1+ρ

and |b1| = 0 + ρ (for ρ ∈ Z) as there are no cusps in πF (LN1).
Now, the same can be shown for L+

N2

∐
L+
∞

7 except the two Reeb chords a2 and b2 have
now a grading di�erence of 3 (the +2 di�erence originates from the two loops on the segment
between the north and south poles of N2). Hence L

+
N1

and L+
N2

are not Legendrian isotopic,
and any path between N1 and N2 must have dangerous self-tangencies.

3.4 Knots

The Legendrian contact homology of the conormal torus LK is called the knot contact homology

of K. Here we'll sketch its simplest version (i.e. with Z/2 coe�cients).

3.4.1 The unknot

Let's begin with the standard embedding of the unknot U in the (xOy) plane. We see S2×R
(i.e. the codomain of the front projection) as a thickened sphere, and represent only the
zero-section. How does the front of LU look like ?

First, follow what happens to the image of a cotangent circle around a point (�gure 12).
It corresponds to a shifted (in z direction) great circle of S2.

INVARIANTS OF KNOTS, EMBEDDINGS AND IMMERSIONS VIA CONTACT GEOMETRY11

projection. This will be a T 2 in S2 × R. We will think of S2 × R as R3 with the
origin removed. That is S2 × {0} is the unit S2 in R3 and S2 × {p} for p < 0 are
concentric spheres inside the unit sphere and for p > 0 they are concentric spheres
outside the unit sphere. In Figure 5 we draw the image of one of the great circle
S1’s in S2 ×R. Recall the R factor is simply the normal component of the position

Figure 5. Unit circle in xy-plane with one unit normal circle
indicated (left). The image of these unit circle in S2 × R =
R3 \ {(0, 0, 0)} (right).

vector (in U) at the point in the unit normal S1. Clearly above the north and
south poles this normal component is 0 and along the equator the magnitude of the
normal component is maximal and of opposite sign for the two points intersecting
the equator. Thus one gets the circle pictured in Figure 5. Since the picture is
symmetric we get the entire front projection by simply rotating this S1 about the
axis through the north and south pole. See Figure 6.

Figure 6. The front projection of the unknot. The four arcs
connect points on the front that project to double points in the
Lagrangian projection (after the original S1 is perturbed to an
ellipse).

We now want to compute the contact homology of LU . So where are the double
points in the Lagrangian projection? In the front projection these correspond to
pairs of points in LU with the same S2 coordinate and parallel tangent planes.
Thus it is easy to see we have an S1 of double points over the equator of S2. This
is a very degenerate situation! To fix this we simply isotop U into an ellipse in the
xy-plane. It is clear that LU looks very similar, but now there are only four double
points. See Figure 6. We denote the double points a1, a2, b1 and b2 as indicated
in the figure. One can check that |ai| = 1 and |bi| = 2. Thus we have ∂ai = 0.
Actually it is possible that ∂ai is 1 if there is an odd number of (rigid) holomorphic
disk with one positive puncture at ai. It is not obvious that there are any such
disks, but in fact there are four for each ai! Two running up towards the north
pole and two running down towards the south pole. One may explicitly find these
disks in T ∗S2 and show these are the only possible disks. This computation also

Figure 12: The conormal above a point of the unknot correspond to a great circle above the zero-section
S2 × {0}. When the point moves along U , the great circle turn.

Gathering all these cotangent circles, we get the front projection of LU . We note that it
is not front-generic, because πF (LU ) has conical singularities at the poles (whereas it should
only have cusps, transverse self-intersections and swallowtails).
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Lagrangian projection (after the original S1 is perturbed to an
ellipse).

We now want to compute the contact homology of LU . So where are the double
points in the Lagrangian projection? In the front projection these correspond to
pairs of points in LU with the same S2 coordinate and parallel tangent planes.
Thus it is easy to see we have an S1 of double points over the equator of S2. This
is a very degenerate situation! To fix this we simply isotop U into an ellipse in the
xy-plane. It is clear that LU looks very similar, but now there are only four double
points. See Figure 6. We denote the double points a1, a2, b1 and b2 as indicated
in the figure. One can check that |ai| = 1 and |bi| = 2. Thus we have ∂ai = 0.
Actually it is possible that ∂ai is 1 if there is an odd number of (rigid) holomorphic
disk with one positive puncture at ai. It is not obvious that there are any such
disks, but in fact there are four for each ai! Two running up towards the north
pole and two running down towards the south pole. One may explicitly find these
disks in T ∗S2 and show these are the only possible disks. This computation also

Figure 13: The front of the conormal torus of the unknot U .

7Looking at the cross-section picture, there are 3 S1 of oriented binormal lines and two isolated oriented
binormal lines on the axis of revolution joining N2 and N∞. But if we perturb N∞ by an optimal Morse
function on the circle, this reduces to the two isolated binormals.
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Nevertheless we can now look for Reeb chords. We see a pair of S1 of these (corresponding
to the S1 family of binormal diameters of U with both orientations) so that it is not chord-
generic either. A geometric way of breaking this symmetry is to make the embedding of
the unknot elliptic, resulting in only 2 pairs of binormal diameters : one for the minor axis
corresponding to minima Reeb chords, and the other for the major axis corresponding to
maxima Reeb chords. In fact we can simplify even more by perturbing directly the front of
L+
U (which will not change Legendrian contact homology) : Choose a optimal Morse function

f on S1 and perturb the front near the equator. The only surviving Reeb chords are the
critical points of f namely a minimum c and a maximum e.

Now to compute the gradings and the di�erential of these two Reeb chords L+
U , we need

to make it front-generic, hence to resolve the conical singularities at the poles. The process of
perturbing the front cone is depicted on �gure 14. The singularity which projects to a point
on the basis S2 of J1(S2), now projects to a curved diamond and its diagonals. The relation
to the front is as follows :

� Vertices lift to swallowtails.

� Edges of the external diamond lift to cusp.

� Diagonals of the diamond lift to (transverse) intersection edges.

The detailed structure of these can be reconstructed from �gure 15.
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Figure 7. A perturbed Lagrangian cone. Along the top of the
figure is an annular neighborhood of the circle in Λ = ΛU that
maps to the fiber above the north pole. On the middle left, we
see the image of this annulus near the north pole in the front
projection, a cone whose boundary is two circles. On the bottom
left is the image of this annulus near the north pole in S2 (that
is, the top view of the cone where we have slightly offset the
circles so that they are both visible). On the middle right, we
see the top view of the cone after it has been perturbed to have
a generic front projection. More specifically, the lighter outer
curve is the image of the cusp curves, the dotted lines are the
image of double points in the front projection and the darkest
inner curve is the image of the circle that mapped to the cone
point before the perturbation. On the bottom right, we see the
image in S2 of the cusp curve and the two boundary circles on
ΛU .

Φ(Γdf ) where f is a smooth function on S1 × R and where Γdf denotes the
graph of its differential.

We will consider specific functions of the form

f(ξ, r) = α(r)g(ξ),

where α(r) is a cut off function equal to 0 for |r| > 2δ and equal to 1 for |r| < δ
for some small δ > 0. Write Cf = Φ(Γdf ).

Figure 14: The perturbation of the front cone. On the top left, a small neighborhood of the north pole
with the front cone in S2 × R. Two circles are distinguished in red and blue. On the bottow left, we
have the projection on S2 of the singularity and the two circles (where the circles are slightly shifted to
be both visible). Note the singularity correspond to a degenerate black circle. On the top right, we see
the caustic of the projection of the perturbed front cone, with the cusp diamond in grey, intersection
edges in dots, and the projection of the black circle which is not degenerate any more. On bottow left,
we have the caustic and surrounding circles.
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Figure 15: The perturbation of the front cone. Five slices of the front (on top) are shown. This �gure
is stolen from [Dim11] section 3 where it is explained in detail. See also section 3.1 of [EENS11].

We are now in position to �nd the gradings of the two Reeb chords. For this, we need to
choose capping paths γe and γc coming from the top of the chord to its bottom. Here we take
paths following meridians to the North pole and coming back, see �gure 16.

c e

γ γc e

Figure 16: The two Reeb chords and their capping paths.

Recall the formula for the grading of Reeb chords (See lemma 2.5 and 3.1 of [EENS11]) :

|c| = cz(c)− 1 = Indc(f
+ − f−) +m(γc)− 1 = Indc(f

+ − f−) +D − U − 1
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where cz is the Conley-Zehnder of chords, Indc(f
+ − f−) is the Morse index of the

di�erence of two local functions de�ning sheets joined by c (with f+ above f− in z direction),
and m is the Maslov index of (oriented) paths on L+

U , which is computed by the number of
down cusps crossed minus the number of up cusps crossed. γe crosses only one down cusp,
namely the right cusp of slice 3 of �gure 15. Similarly for γc, so that we get, recalling c is a
minimum, e a maximum in equatorial direction, and both are maxima in meridian direction
(i.e. Indc(f

+ − f−) = 1 and Inde(f
+ − f− = 2):

|c| = 1 + 1− 1 = 1 |e| = 2 + 1− 1 = 2

Moreover to ensure the results don't depend on our choices, we must check that the Maslov
class of L+

U vanishes. This implies checking that Maslov indices of generators of H1(L
+
U ) are

zero. Let's take a representative of the longitude of the torus λ along the equator of the
sphere, and of the meridian of the torus µ along the meridian of the sphere, as depicted on
�gure 17. λ crosses no cusp, so its index is zero. And it is clear from the previous discussion
that µ crosses one up cusp and one down cusp.

λ

μ

Figure 17: The representatives of the generators of H1(L+
U ).

We now proceed to the di�erential. To compute it we will look for rigid Morse �ow trees
coming out of c and e. As sheets of the front of L+

U are maximally far part only at the equator,
�ow trees stay in a particular hemisphere. Moreover the front is symmetric with respect to
north south reversal (we can easily make all pertubations symmetric), so we can represent �ow
trees on one hemisphere - for example north - and everything will go similarly on the south
hemisphere. There are only six rigid trees, two in the north hemisphere, their mirrors in the
south, and two in the equator, see �gure 18. To explain these, recall that c is a saddle point,
the only trees �owing out of c must follow the meridian direction, so they are approching the
poles on sheets A and B on slice 3 of �gure 15. Now two behaviours are possible :

� IN (N for North) continue through slice 3 of �gure 15 and die on the right cusp AB.

� YN split at the left cusp CD in slice 3 (at a trivalent Y vertex). Then one part continue
between sheets A and D, to die on the right cusp AD in the middle of slice 2, whereas
the other part continue between sheets B and C, to die on the right cusp BC in the
middle of slice 4.

� the same can be said of IS and YS respectively.

This amounts to four trees contributing each for 1 in the di�erential so that ∂c = 0 modulo 2.
The chord e is a maximum, so all directions are �owing out of e, but only two are rigid

�ow trees in the equator, and they have to end on e (they are E1 and E2 on 18). These results
are in accordance with the expected dimension formula for Morse �ow trees :

dimM(c, b1b2 · · ·n) = |c| − |b1| · · · − |bn| − 1
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The boundaries of these 1-parameter families are as follows:

∂ĨN = (E1# IN) ∪ (E2 # IN), ∂ỸN = (E1 #YN) ∪ (E2#YN),

∂ĨS = (E1 # IS) ∪ (E2# IS), ∂ỸS = (E1#YS) ∪ (E2#YS).

Here E1# IN denotes the broken tree obtained by adjoining IN to E1, etc. See
Figures 8 and 9. Furthermore, the 1-jet lifts of the flow trees in each of these
families sweep the part of the torus lying over the corresponding hemisphere
(N or S) once.

The formal proof of this result about 1-parameter families would require a
more thorough study of flow trees in particular including a description of all
vertices of flow trees that appear in generic 1-parameter family. This is fairly
straightforward, see [8, Section 7]. For the purposes of this paper it suffices to
work with constrained rigid trees rather than 1-parameter families so details
about 1-parameter families of flow trees will be omitted.

IN

c c

YN

c

e

E0

E1

Figure 8. Rigid flow trees for Λ on the northern hemisphere of S2.

Remark 3.4. We will not need a precise expression of the one-dimensional

families ĨN , ỸN , ĨS, and ỸS in our computations, but we do need a rough
understanding of them. To see the family of disks, start with the symmetric
picture of Λ coming from the conormal lift of U . Now make a small perturba-
tion of the north and south poles as shown in Figure 7. Then we see an I and
Y flow tree from each point on the equator into the northern hemisphere and
another into the southern hemisphere. Now perturbing slightly so the equator
is no longer a circle of critical points but contains only the critical points c
and e and two flow lines between them, we will see that each of the I and Y

disks will become part of one of the one-dimensional families of disks ĨN , ỸN ,

ĨS, and ỸS. See Figure 9.
It is also useful to see these trees as arising from the Bott-degenerate conor-

mal lift of the round unknot. Here there are four holomorphic disks emanating
from each Reeb chord. The corresponding trees are just flow lines from the
equator to the pole. The 1-jet lift of such a flow line can then be completed
by one of the two half circles of the circle in Λ which is the preimage of the
pole. The Bott-degenerate 1-parameter family then consists of a flow segment

Figure 18: The rigid �ow trees coming out of c and e projected on the North hemisphere of the base
S2. The trees IS and YS have the same projection that IN and YN but on the south pole.

We conclude that the Legendrian contact homology of LU i.e. the knot contact homology
of the unknot U is Z/2Z in degrees 1 and 2, and vanishes in all other degrees.

3.4.2 General knots

For general knots, we have to put them �rst in a braid representation B, near the unknot.
Assume our knot K is entirely contained in a small tubular neighborhood of U . Then apart
from the braided part, we get k unknots (where k is the number of strands of B), in a
neighborhood of U . So that two kinds of analysis has to be made.

� a local analysis in the tubular neighborhood of U . Looking at binormals between these
n strands, perturbing to achieve a minimal number of these, which lead to small Reeb
chords.

� a global analysis, expanding what we have just done in the preceding section. Between
each pair of unknots, there must be two long Reeb chords e and c.

And these two must be pieced together. Finally the same kind of two-step reasoning allows one
to �nd the rigid �ow trees. The idea is brie�y given at the end of [EE04], and full explanations
- involving multiscale �ow tres - are to be found in [EENS11].
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