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1 Associating symplectic objects to smooth ones

1.1 Introduction

Let M be a smooth closed manifold of dimension m. Then its cotangent bundle T*M has
a natural exact symplectic structure w = d\ coming from the Liouville 1-form A on T*M.
Recall that \ is defined by the requirement that, for any 1-form a on M (considered as a map
M — T*M) the pullback of A by « is equal to « :

a* A = a.
Explicitly, for v € T*M, w € T,(T*M), writing = : T*M — M for the base projection,
Au(w) = u(m(w)).

If we are given local coordinates qi,..., ¢, on an open set U in M, then q1,...,¢m,P1,---,Pm

m
are coordinates on T*U C T*M (where « € Ty M writes a = >~ pidg;). The expression for A
i=1

becomes (where by the usual abuse of notation dg; really means 7*dg;, noting that \ is a map
T*M — T*(T*M)):
m
A= Zpid%‘-
i=1

And we get the standard expression for the symplectic form :

m
w= Z dp; N dg;.
=1

Fact 1. If M is diffeomorphic to M’, then T*M is symplectomorphic to T*M’.

Proof. Let ¢ : M ~ M'. Then ¢, : T*M — T*M’ is a diffeomorphism. Now by naturality of
the Liouville 1-form (i.e. the assignment M +— Ajs is functorial), the pullback of Ay by ¢,
has to be A\ps. As a consequence (¢s)*(dAy) = d\yy. O

*Everything here (content and figures) was stolen from [EE04], [Ng05], [Ng12] and [EENS11].



We conclude that the symplectomorphism class of T*M is an invariant of the
diffeomorphism class of M. Is this invariant efficient 7
It turns out the symplectic manifold T*M recovers homotopical data about M :

Theorem 1.1. (Viterbo, Salamon-Weber, Abbondandolo-Schwarz). The Hamiltonian Floer
homology of T*M 1is isomorphic to the singular homology of the free loop space of M.

It also seems the symplectic structure can distinguish different smooth structures :

Theorem 1.2. (Abouzaid). If ¥ is an exotic (4k+1)-sphere that does not bound a parallelizable
manifold, then T*Y is not symplectomorphic to T*S**1 (for the standard sphere).

Therefore we can wonder : Is the smooth type (i.e. up to diffeomorphism) of M determined
by the symplectic type of T*M (i.e. up to symplectomorphism) 7
This question is still open (at least for closed manifolds : by the work of Knapp different 4-
dimensional homeomorphic open manifolds have symplectomorphic cotangent bundles [Knal2]
- thus any exotic R* together with standard R?* are a counterexample).

In this talk, we will present the relative version of this symplectic approach : its appli-
cation to the classification of types (i.e. up to isotopy or regular homotopy) of (immersed)
submanifolds.

1.2 The conormal construction
1.2.1 Lagrangian version

Let N C M be a n-dimensional (potentially immersed) closed submanifold of M. To it, we
can associate a subspace of T*M : the conormal bundle of NV denoted by Ly .

Ly ={ueT*"M|n, u(v)=0 Yve TN} CT*M

Ly is the set of covectors based at points of N whose kernel contains the tangent space
to N. If N is embedded, Ly is a vector subbundle of rank m — n of T* M|y and as such
is an embedded m-submanifold of T*M. In fact it is exact Lagrangian. Indeed let u € Ly
and w € T, Ly C T,,(T*M|y). Note that the base projection 7 sends T*M|x to N, so that
T(w) € Ty N is a tangent vector to N and

Au(w) = u(mye(w)) =0

by definition of L. We get w|z, = dA|zy = 0 and Az, = 0 thus exact.

Now via this construction, if we isotope N through smooth embeddings in M, Ly will be
isotoped through exact Lagrangians. So the hamiltonian isotopy class of Ly C T"M is
an invariant of the smooth isotopy class of N C M.

1.2.2 Legendrian version

If we are given a Riemannian metric g on M, we can simplify Ly a little and make contact
geometry enter the game by losing one dimension and getting rid of noncompactness. Let
ST*M be the spherization of the cotangent bundle of M, i.e. tangent covectors of norm 1,
also called the cosphere bundle. It is a contact manifold which is the convex boundary of
the Liouville domain DT*M (the disc cotangent bundle i.e. covectors of norm < 1). Indeed



A sT+ar is a contact form E Now, intersect Ly with the unit cotangent bundle ST*M of M
and you get the unit conormal bundle of N C M :

Ly =Ly NST*M = {u e T*M|y, |Jully =1, u(v) =0 Vo € TN}.

With the isomorphism 7% M S TM , we can furthermore identify Ly with the unit normal
bundle of N and so with the boundary of a tubular neighborhood of N in M.

The previous discussion shows that Ly is a (m — n — 1)-sphere bundle over N, and in fact
a closed Legendrian submanifold of ST*M. We conclude as before that the Legendrian
isotopy class of Ly C ST*M is an invariant of the smooth isotopy class of N C M.

™M

DT*M Lx

I
Ly NST*M

Figure 1: Representation of N C M, Ly C T*M and Ly C ST*M in the simplest case M = S* and
N is a pair of points - this can also be considered as schematic of the general case.

Remark 1.3. One could be unconvinced by the last statement because of the necessity of
choosing a metric. In fact we can bypass this choice by considering, in place of ST*M, the
Grassmanian bundle of oriented hyperplanes tangent to M. Any tangent hyperplane is deter-
mined by a half-line of cotangent vectors of M, so that this bundle is canonically isomorphic
to the oriented projectivized cotangent bundle P, T*M of M. As a quotient of T*M, P, T*M
inherits the hyperplane field ker A (because A commutes with R>% multiplication in cotangent
fibers) and is the natural contact manifold associated to M. Finally in the hyperplane Grass-
manian picture, Ly is the set of hyperplanes over points of N which contains the tangent

m -
'Let X be the radial vector field in cotangent directions (in local coordinates X = > p; %). It is transverse
i=1 ‘

to ST*M, and A = X _w. The claim follows.



spaces to N. For any choice of metric, P, T*M can be identified with the unit cotangent
bundle ST*M by a canonical contactomorphism (sending a half-line to its intersection with
the unit cosphere). The use of a metric simply allows us to geometrically visualize Ly as the
boundary of a tubular neighborhood of N (and clearly see its sphere bundle structure).

Note 1.4. If N is only immersed in M, then Ly could a priori have double points. A simple
condition to avoid these is to ask N to be a self-transverse immersion (which is a generic
property as n < m). In this case, over a double point ¢ of N there is two transverse tangent
planes T, N L and 4N 2. so that there is two corresponding sets of points of Ly over ¢:

e the oriented tangent hyperplanes of M containing T, N 1
e the ones containing T, N2

These sets are disjoint because there cannot be a point in both ¢.e. a hyperplane contain-
ing Tqu and Tqu. Such an hyperplane would contain TqN1 <> TqNQ, which is T4 M by
the transversality assumption, so don’t exist. Moreover, if we move N by regular homo-
topy without self-tangency at double points, Ly remains embedded so that the Legendrian
isotopy class of Ly C ST*M is an invariant of the "regular homotopy without
self-tangency" class of the self transverse immersion N in M.

2 The case of submanifolds of euclidian space

2.1 Generalities

Locally, contact geometry sums up to the study of 1-jet spaces. Recall that if W is a manifold,
J'W = T*W xR is canonically a contact manifold with contact form o = dz— Ay where Ay is
the Liouville 1-form on T*W lifted trivially in the additional R factor, and z is this additional
Coordinateﬂ Let’s come back to the setup of the previous section, in the case M = R". Then
the unit cotangent bundle is trivial :

ST*R™ = R™ x §™~1,

so that we can see it as S™ !-bundle over R™, or a R™-bundle over S™!. In fact we have
better :
Proposition 1. (ST*R™, Agm|g7+gm) is contactomorphic to (J'S™ 1, dz— Agm-1) via the map
R™ x §™71 - JHSs™
(¢,p) = (g, p) = (p.qa—(a,p)p, {q, D))

where (g, p) are global coordinates on R™ x S™~! (with p of unit norm), and (-,-) is the
canonical scalar product on R™, so that (q,p) is the part of the vector ¢ orthogonal to the
sphere S™~! at p, and ¢ — (g, p)p is the part of ¢ tangent to the sphere at p E]

2J'W is the contactization of the exact symplectic manifold T*TV.

3This seems to implicitly assumes a choice of linear isomorphisms between 7,S™ ™ and R™~! for each p.
This is impossible, except for m = 2,4, 8, because spheres are generally not parallelizable. However the global
map is well defined : if we write (S™ ') for the normal bundle of the standard sphere in R™ which is a trivial
line bundle, then 7S™~! @ v(S™ ) is trivialisable as it is the restriction of the (trivial) tangent bundle of
R™ restricted to S™ ! (spheres are stably parallelizable). Identifying cotangent and tangent bundles via the
canonical metric on R™, this is exactly what the map ¥ is about (seeing R™ x S™~! as TR™|gm-1.



Proof. ¥ is a bundle map covering the identity of S™ ! and is clearly a linear isomorphism

on each fiber p = constant. So ¥ it a diffeomorphism. Let’s show it is a contactomorphism

for the respective canonical contact structures : in coordinates (z,y,2) on J'S™~ ! where

x € R™ unit (assuming the standard embedding of the sphere in euclidian space E[) and
m

y € TpS™ 1 C R™ so that y + zz is a vector in R™, we have a = dz — Agm—1 = dz — Y y;dx;.

i=1
m m m
So that U* o = d({q,p)) — > (a: — (q, p)pi)dpi = d(3 piqi) — 3_ qidpi (because p is on the unit
m er:zl =1 mz:l
sphere Y p? = 1 so that Y p;dp; = 0) and finally U*a = 3 p;dg; = Agm|srrm - O
i=1 i=1 i=1

The advantage of this point of view are double. In 1-jet spaces there are two special
projections : the Lagrangian projection mc : J'W — T*W which forgets the z coordinate
and the front projection mp : J'W — W x R which deletes cotangent directions. We can
recover a Legendrian L C J'W from either projection (completely from 7 (L) and only up to
z-translation from mc(L)), and so can diminish greatly the dimension of our drawings (from
2 dim W+1 to dim W +1). Besides, Legendrian contact homology in 1-jet spaces is perfectly
well-defined - we will apply it in section 3.

2.2 Plane curves

The simplest non-trivial examples are (connected) plane curves i.e. (self-transverse) immer-
sions of N = 2! in R%. In this case the unit conormal bundle Ly has two connected compo-
nents.

Figure 2: The cosphere bundle of R? (ST*R?) represented as the filled torus R? x S, with some of its
contact planes around the {0} x S fiber.

In fact this is the general case of codimension one immersions. Indeed as explained earlier
we can identify Ly on embedded charts of N with the boundary of a tubular neighborhood of
N. As N is a codimension one hypersurface, it cuts the ambiant space in two, so that Ly has
(locally) two connected components. What happen when we glue together all of these parts ?

4Recall the Liouville form of S™~ ' is induced by the Liouville form of R™ : Agm = Y yidx;.
i=1

k3



Proposition 2.1. Ifn=m —1, Ly is a two-fold cover of N which happens to be exactly the
orientation cover of N.

Proof. In the hyperplane Grassmannian picture, remember that Ly is the set of oriented
tangent hyperplanes containing T'N. But NN is an hypersurface so that, if ¢ € N, T, N is an
hyperplane, and so there are only two oriented hyperplanes containing it : +7; N and —T,N.
Each point can be seen as a choice of orientation on T, N. O

Assuming N is connected, two things can happen :
e cither N is not orientable and the orientation cover Ly is connected.

e or N is orientable and Ly has two connected components L} and Ly diffeomorphic
to N corresponding to the two possible orientations of N. KEach component can be
recovered from the other by the antipodal map on S™~! followed by changes of sign on
both R™~! and R factors (in the J*(S™~1!) picture).

Note that in the second case, if we are given an orientation on N, this distinguishes one of
the components (denoted LE above). Moreover, LE is oriented by this choice. Dropping one
component has one more advantage : N can now have inverse self-tangencies. Indeed if at a
double point ¢ of N, the tangent planes coincide but their coorientation (coming from N’s
orientation together with R™’s) are opposite (what we mean by an inverse self-tangency), each
will correspond to only one point. Both form a pair of antipods in S™!, so that Lfv has no
double point (whereas Ly = LX,ULZ_V has a double point over ¢). However direct self-tangency
(i.e. when coorientations agree) still creates double points of L. Calling immersions and
regular homotopy safe if they don’t have direct self-tangency, we conclude : the Legendrian
isotopy class of LE is a safe homotopy class invariant of the safely immersed
(oriented) hypersurface N of M.

Remark 2.2. In higher codimension n < m — 1, N connected implies Ly connected. This is
clear when investigating the tubular neighborhood of codim > 1 embedding.

Coming back to plane curves, as S! is orientable, this explains our first claim. Recall
ST*R? is a contact manifold identified with the filled torus (see figure , and Ly (and thus
LE) is a Legendrian submanifold of this cosphere bundle. That is to a plane curve, we have
associated a Legendrian knot in R? x S* (called the conormal knot, see figure [3)).

So any isotopy invariant of LX, is a safe homotopy invariant of N. For instance we have
the classical invariants of LE :

e its smooth knot type K(L};) (which contains its homology class in H'(R? x S1) ~ Z
also called its winding number n(L};) around {0} x S!)

. . _l’_
e its rotation number r(L})

e its Thurston-Bennequin number tb(LY).

As explained in the preceding subsection, we can see LE as a Legendrian in J'(S'). Then
with (q1,q2) coordinates on R?, parametrizing J*(S') by (6,y,2) € R/27Z x R x R, we can

5That’s why they were called dangerous by Arnold.



(o

&

Figure 3: Two oriented planes curves and their Legendrian conormal knots Lf\, in the filled torus
R? x S'. To get Ly, just apply the antipodal map of S* to L}.

describe the conormal knot as follows :

v . .
Ly = {(¢ + 50— cosd —gasing, —qising + g2 cos ), (q1,42) € N
with unit tangent vector (cos ¢, sin (]5)}

or if we prefer normals to tangents :

LY = {(1/}, —q1sin1 + ga cos v, g1 cos Y + qasine), (qi,q2) € N

with unit normal vector (cos),sin 1/1)}

The front projection is obtained by dropping the middle coordinate y. It is an usual front
in R/277Z x R i.e. a singular curve without vertical tangent, and which generically only has
transverse double points and semicubical cusps. Cusps of WF(L_]‘\—;) corresponds to inflection
points of N.

O — 0 <

Figure 4: The same planes curves with their respective Legendrian fronts in R/277Z x R (coming from
the projection J'S' — St x R). The first one has index n = +1 (with the canonical orientation of the
plane), rotation number r = 0, and tb = 0, whereas the second has n =0, r =0, and tb = —1

Computing the classical invariants is now easy (see the examples on figure {4} :



e Round up the cusps and resolve crossings (higher slope behind) to get a smooth knot
type. The winding number (index) is just the degree of the map S' — S! obtained by
inclusion of N in J!(S!) followed by the projection to the base.

e r(L};) is half the difference between the number of down cusps and the number of up
cusps. It turns out to be always zero : there are as many left cusps as right cusps
(because mp (L) is a closed curve without vertical tangent). And left cusps are always
down, whereas right cusps are always up (check what happens in a neighborhood of an
inflection point of N).

. tb(LE) is the difference between the number of right handed crossings and the number
of left handed crossings minus half the number of cusps. This is equal to JT(LL) +
n(L%)? + 1 where JT is Arnold framing invariant of plane curves.

In conclusion classical invariants of L]J(, sums up to the framed knot type of Ly. But this
is already a strong invariant of plane curves as can be seen on these examples (figures 4| and

B).

Figure 5: Pairs of plane curves where left and right are distinguished in each line thanks to classical
invariants of the conormal knot. Thus any regular homotopy between left and right has to contain a
dangerous tangency.

2.3 Surfaces

Consider the case n = 2 = m — 1 and more precisely the example of N = S? safely immersed
and oriented. L} is then a Legendrian sphere in J1(S?)
Its classical invariants are :

e The safe regular homotopy class of S? — J'(S?). As the target is of dimension 2 x 2+1,
by Whitney theorem(s), the only obstruction for two maps S? — J'(5?) to be in the
same class is of homotopic nature, i.e. in mo(J'(S?)) =~ m2(S?) ~ Z. This invariant
(which is simply the homology class represented by L) is determined by the degree of
the map S? — S? obtained by inclusion of L} followed by projection to the base.

e Its rotation class r(L};) which can be seen as a homotopy class of maps S? — U(2). As
m(U(2)) = 0, it it trivial.

o Its Thurston-Bennequin number. It is more or less the linking number of Lj\', and L.
This gives a first-order invariant of immersions of surfaces into R?® (an other one is given
by the number of pairs of triple points, see [Gor97| for full details).



An well-known example is the standard embedding of the sphere with different coorienta-
tions : a path from one to the other is called a sphere eversion. Their conormal lifts represent
the same homology class but are distinguished by their tb so that any sphere eversion must
contain dangerous self-tangencies. A more sophisticated example is given on figure [, we will
distinguish them in the next section.

Z : Z

Figure 6: Two immersions of the sphere as surfaces of revolution. They are obtained by spinning each
arc (in the plane (xOz)) on the figure around the vertical axis (Oz) joining their ends.

2.4 Knots

Passing to the codimension two case, the simplest example are links. Consider N = K = S' an
oriented embedded knot in M = R3 We get a Legendrian surface Ly in J!(S?). Remembering
L identifies with the boundary of tubular neighborhood of K, it is clear that Ly is a torus,
which we will call (by chance) the conormal torus of K. Tts classical invariants are :

e The homotopy type of the map 7% — J'(S?) ~ 82, i.e. an element of the second
cohomotopy set of the torus. By a theorem of Hopf (as T? is a 2-dimensional CW-
complex) this set is isomorphic to H?(T?). It is determined by the degree of the map
T? — S? obtained by inclusion of Ly followed by projection to the base (it corresponds
to the homology class represented by L ). It is equal to the normal degree of the torus
boundary of a small tubular neighborhood of K (by identification of the cotangent and
tangent bundle of R?) which is x(7?) = 0 by the Gauss-Bonnet theorem.

e Its rotation class r(Lg) seen as an homotopy class of map T? — U(2). It can be shown
to be the null map.

e [ts Thurston-Bennequin number. For even-dimensional null-homologous Legendrians, it
is always equal to the Euler characteristic, here zero.

In the end, there are no classical invariants for conormal tori. But, we must not lose faith,
and proceed to the next best idea :

3 Applying Legendrian contact homology

3.1 General case

Consider a Legendrian A in the contact manifold J'W. As you know, Legendrian contact
homology needs the definition of a differential graded algebra with some coefficient (the sim-
plest is Z/2, the reasonably elaborate are Z[H?(J'W, A)]) generated by the Reeb chords of



A. To be able to speak of these, we need to fix a contact form «, so that Reeb chords are
portions of integral lines of the Reeb vector field R, which begin and end on A. For J'W,
R, = % and Reeb chords are vertical segments. Then the differential counts holomorphic
curves in the symplectization of J'W which is R x J'W with symplectic form d(efa) where
t is the new coordinate. Note that in the case of this talk W = S™~! the symplectization is

symplectomorphic to T*R™ i.e. T*R™ minus the zero section.
In the front projection Reeb chords correspond to vertical segments joining points with
parallel tangent planes, whereas in the Lagrangian projection they correspond to double points.

Proposition 3.1. For our case of a conormal Legendrian Ly associated to a submanifold N
of R™, the chords correspond to oriented binormals lines of N.

Definition 3.2. An oriented binormal lineﬁ is a oriented line joining two points ¢ and ¢’ who
share an oriented normal vector p, such that this line is directed by this p.

Proof. Indeed two such points corresponds to (p, ¢’ — (¢, p)p, (¢',p)) and (p,q¢ — {q,p)p, (¢, p))
for the same p. These are double points of the Lagrangian projection if and only if ¢'— (¢, p)p =

q—(¢,p)p <= ¢ —q={(¢d —q,p)p i.e. the line joining ¢ and ¢’ is parallel to the common
normal p. O

Note 3.3. We just showed that (oriented) binormals (lines) of N correspond to double points of
the Lagrangian projection of Ly. In the same way, oriented bitangent lines, ¢.e. lines joining
two points who share a oriented tangent vector v (hence sharing a oriented normal vector p),
and are directed by this v, correspond to double points of the front projection of Ly (but
these are less important for contact homology). Note also that the length (for the canonical
Riemmanian metric on R") of a binormal segment is exactly the length of the corresponding
Reeb chord, namely [{(¢' — ¢, p)|.

Moreover, this computation shows that binormals come in pairs : if change p in —p, we get
another oriented binormal line. In terms of chords, this mean that to each Reeb chord over
p in J1(S™1) correspond another Reeb chord over —p. Nevertheless, for the codimension
one case, where we only consider LT, binormals no longer come by two, because only one of
{p,—p} is a point of L} as we fixed an orientation (see figure . However if we keep L,
then two cases can happen :

e an oriented binormal line joins two points with the same normal p (fixed by orientation).
Then this corresponds to a Reeb chord of LE over p. But there is also an oriented
binormal joining the same points considered with opposite orientation (with normal
—p). This corresponds to a Reeb chord of L over —p.

e an oriented binormal line joins two points with opposite normal p and —p. This is not
a pure Reeb chord of LE nor Ly, but this corresponds to two mixed Reeb chords of
Ly= L]J(, U L. One over p and one over —p.

In standard geometry, a binormal line is simply a unoriented line orthogonal to N in two points. But as
we are working with the spherical normal bundle (and not the projectivized normal bundle), orientation of
lines matter.

10
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Figure 7: The binormal line (in red dots) on the plane curve N joining q and q' (left), and the
corresponding Reeb chord (in red dots) on the front joining the images of these points.

3.2 Plane curves

First-order invariants of plane curves are powerful but not complete. The example on figure
of the same plane curve with different orientations cannot be distingued by its framed knot
type of its conormal.

Figure 8: Two plane curves and the fronts of their conormal knots. These have the same classical
invariants, but are not Legendrian isotopic.

However they are distinguished by their Legendrian contact homology. Indeed taking the
satellite of each Lg with the once-positively-stabilized Legendrian unknot, we get the so-called
Eliashberg knots E(2,3), and E(1,4) (see figure [9).Their contact DGA are different as their
Poincaré polynomials sets are respectively {2t +¢~1} and {3 + ¢ 4+ ¢t73}.

Figure 9: The satellite construction with the stabilized unknot (on the left) on the fronts of figure @

3.3 Surfaces

Using the identification of Reeb chords with binormals, we see that the conormal Legendrian
associated to the left sphere Ny on figure [6 has no Reeb chord (for both coorientations). The

11



same can be said of the right sphere Ny, so that both their DGA are Z/2. Let’s prove it by
showing they have no oriented binormals. As these are surfaces of revolution, the problem
reduces to the plane (zOz) (because normal lines to a cross-section stays in the plane of cross-
section). In this plane, shown on figure , it is clear that there is no oriented binormals (but
there are non-oriented binormals corresponding to Reeb chords between L7, and Ly,).

O

Figure 10: The cross-sections of the spheres N1 and Ny. On the cross-section of N1 each radius is an
unoriented binormal line, but all pairs of points joined have opposite normals. The same can be said
of the 8 unoriented binormal lines we can see on the cross-section of No. Thus Ly, and Ly, have no
pure Reeb chords, so that LEl and L?\}Q have no Reeb chords.

However, the front of LEI is the zero-section shifted in the vertical (z) direction, so that if
we consider the link of L;{,l and of another zero-section shifted high up L}, (being the positive
conormal lift of a sphere Ny, of big radius), LEI [T LL has a S? set of Reeb chords (see figure

).

Figure 11: The submanifold N1 [[ Noo C R? and some of its oriented binormals. Remember it is the
union of two concentric spheres with the same outer coorientation, so that every radius line is an

oriented binormal, i.e. we have a S? of these.
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Perturbing L} by a Morse function f, we get only two Reeb chords a1 and by which are the
maximum and minimum of f. By correspondence with the Morse complex of f, da; = 0 and
0by = 0, so that the Legendrian contact homology of L]J(,l 1 LE is Z/2(a1,b1) with |a1] = 14p
and |b1| =0+ p (for p € Z) as there are no cusps in 7p(Lny, ).

Now, the same can be shown for LEQ [ LE || except the two Reeb chords az and by have
now a grading difference of 3 (the +2 difference originates from the two loops on the segment
between the north and south poles of Ny). Hence LR and LEQ are not Legendrian isotopic,
and any path between N; and Ns must have dangerous self-tangencies.

3.4 Knots
The Legendrian contact homology of the conormal torus L is called the knot contact homology
of K. Here we’ll sketch its simplest version (i.e. with Z/2 coefficients).

3.4.1 The unknot

Let’s begin with the standard embedding of the unknot U in the (xOy) plane. We see S% x R
(i.e. the codomain of the front projection) as a thickened sphere, and represent only the
zero-section. How does the front of Ly look like 7

First, follow what happens to the image of a cotangent circle around a point (figure .
It corresponds to a shifted (in z direction) great circle of S2.

~

Figure 12: The conormal above a point of the unknot correspond to a great circle above the zero-section
S2 x {0}. When the point moves along U, the great circle turn.

Gathering all these cotangent circles, we get the front projection of L. We note that it
is not front-generic, because 7mp(Ly) has conical singularities at the poles (whereas it should
only have cusps, transverse self-intersections and swallowtails).

Figure 13: The front of the conormal torus of the unknot U.

"Looking at the cross-section picture, there are 3 S' of oriented binormal lines and two isolated oriented
binormal lines on the axis of revolution joining N2 and N.. But if we perturb N by an optimal Morse
function on the circle, this reduces to the two isolated binormals.
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Nevertheless we can now look for Reeb chords. We see a pair of S! of these (corresponding
to the S* family of binormal diameters of U with both orientations) so that it is not chord-
generic either. A geometric way of breaking this symmetry is to make the embedding of
the unknot elliptic, resulting in only 2 pairs of binormal diameters : one for the minor axis
corresponding to minima Reeb chords, and the other for the major axis corresponding to
maxima Reeb chords. In fact we can simplify even more by perturbing directly the front of
LJ& (which will not change Legendrian contact homology) : Choose a optimal Morse function
f on S' and perturb the front near the equator. The only surviving Reeb chords are the
critical points of f namely a minimum c and a maximum e.

Now to compute the gradings and the differential of these two Reeb chords La we need
to make it front-generic, hence to resolve the conical singularities at the poles. The process of
perturbing the front cone is depicted on figure The singularity which projects to a point
on the basis S? of J!(S?), now projects to a curved diamond and its diagonals. The relation
to the front is as follows :

e Vertices lift to swallowtails.
e Edges of the external diamond lift to cusp.
e Diagonals of the diamond lift to (transverse) intersection edges.

The detailed structure of these can be reconstructed from figure

O ©

Figure 14: The perturbation of the front cone. On the top left, a small neighborhood of the north pole
with the front cone in S% x R. Two circles are distinguished in red and blue. On the bottow left, we
have the projection on S? of the singularity and the two circles (where the circles are slightly shifted to
be both wvisible). Note the singularity correspond to a degenerate black circle. On the top right, we see
the caustic of the projection of the perturbed front cone, with the cusp diamond in grey, intersection
edges in dots, and the projection of the black circle which is not degenerate any more. On bottow left,
we have the caustic and surrounding circles.
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Figure 15: The perturbation of the front cone. Five slices of the front (on top) are shown. This figure
is stolen from section 3 where it is explained in detail. See also section 3.1 of [EENST).

We are now in position to find the gradings of the two Reeb chords. For this, we need to
choose capping paths 7. and 7. coming from the top of the chord to its bottom. Here we take
paths following meridians to the North pole and coming back, see figure [16]

Figure 16: The two Reeb chords and their capping paths.

Recall the formula for the grading of Reeb chords (See lemma 2.5 and 3.1 of [EENST1I]) :
lcf =cz(c) =1 =Ind.(f" — f)+m(y) —1=Ind.(fT -~ f)+D-U~—1
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where cz is the Conley-Zehnder of chords, Ind.(f* — f~) is the Morse index of the
difference of two local functions defining sheets joined by ¢ (with f above f~ in z direction),
and m is the Maslov index of (oriented) paths on L;}, which is computed by the number of
down cusps crossed minus the number of up cusps crossed. 7. crosses only one down cusp,
namely the right cusp of slice 3 of figure Similarly for ~., so that we get, recalling ¢ is a
minimum, e a maximum in equatorial direction, and both are maxima in meridian direction

(i.e. Ind.(fT — f7)=1and Ind.(f* — f~ =2):

l=14+1-1=1 le[=2+1-1=2

Moreover to ensure the results don’t depend on our choices, we must check that the Maslov
class of L;} vanishes. This implies checking that Maslov indices of generators of H 1(L;}) are
zero. Let’s take a representative of the longitude of the torus A along the equator of the
sphere, and of the meridian of the torus p along the meridian of the sphere, as depicted on
figure [I7} X crosses no cusp, so its index is zero. And it is clear from the previous discussion
that p crosses one up cusp and one down cusp.

Figure 17: The representatives of the generators of Hq (Lﬁ)

We now proceed to the differential. To compute it we will look for rigid Morse flow trees
coming out of ¢ and e. As sheets of the front of L$ are maximally far part only at the equator,
flow trees stay in a particular hemisphere. Moreover the front is symmetric with respect to
north south reversal (we can easily make all pertubations symmetric), so we can represent flow
trees on one hemisphere - for example north - and everything will go similarly on the south
hemisphere. There are only six rigid trees, two in the north hemisphere, their mirrors in the
south, and two in the equator, see figure To explain these, recall that c is a saddle point,
the only trees flowing out of ¢ must follow the meridian direction, so they are approching the
poles on sheets A and B on slice 3 of figure Now two behaviours are possible :

e Iy (N for North) continue through slice 3 of figure [L5{and die on the right cusp AB.

e Yy split at the left cusp CD in slice 3 (at a trivalent Y vertex). Then one part continue
between sheets A and D, to die on the right cusp AD in the middle of slice 2, whereas
the other part continue between sheets B and C, to die on the right cusp BC in the
middle of slice 4.

e the same can be said of Is and Yg respectively.

This amounts to four trees contributing each for 1 in the differential so that dc = 0 modulo 2.

The chord e is a maximum, so all directions are flowing out of e, but only two are rigid
flow trees in the equator, and they have to end on e (they are Eq and Es on . These results
are in accordance with the expected dimension formula for Morse flow trees :

dim M(C, b1b2 R 'n) = |C’ - |b1| cee — ‘bn| -1
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Figure 18: The rigid flow trees coming out of ¢ and e projected on the North hemisphere of the base
S2. The trees Is and Ys have the same projection that Iy and Yy but on the south pole.

We conclude that the Legendrian contact homology of Ly i.e. the knot contact homology
of the unknot U is Z/27Z in degrees 1 and 2, and vanishes in all other degrees.

3.4.2 General knots

For general knots, we have to put them first in a braid representation B, near the unknot.
Assume our knot K is entirely contained in a small tubular neighborhood of U. Then apart
from the braided part, we get k unknots (where k is the number of strands of B), in a
neighborhood of U. So that two kinds of analysis has to be made.

¢ a local analysis in the tubular neighborhood of U. Looking at binormals between these
n strands, perturbing to achieve a minimal number of these, which lead to small Reeb
chords.

e a global analysis, expanding what we have just done in the preceding section. Between
each pair of unknots, there must be two long Reeb chords e and c.

And these two must be pieced together. Finally the same kind of two-step reasoning allows one
to find the rigid flow trees. The idea is briefly given at the end of [EE04], and full explanations
- involving multiscale flow tres - are to be found in [EENSII].
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